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Coupling

A coupling (Xt, Y:): if both X; and Y; are Markov processes
associated with the same transition probability P; ( with
different initial distribution p1 and py), where X; and Y; are
called the marginal processes of the coupling.

A coupling (X, Y:) is called successful if the coupling time
T:=inf{t>0:X¢ =Y} <00, as.
Then

”Ml’Dt ,UJ2Pt||var = ”51|JP ‘E Xt)] _E[f(yt)“ < 2]P)(T > t)

which goes to 0 as t — oo.



Coupling

Definition. A strong Markov process with P; is said to have a
coupling property if for any u1, p2, limesoo |11 P = pi2 Pt var = 0.

The definition is equivalent to one of the following:

All bounded time-space harmonic functions (i.e.
u(t,-) = Psu(t+s,-)) are constant.

The tail o-algebra of the process is trivial.

See Cranston and Greven (1995) and Lindvall (1992).



Motivation

A growing literature on coupling for jump processes.

Basic coupling and refined basic coupling:

Chen (2004): Q processes; Schilling and Wang (2011): Levy
processes; Wang (2012): Ornstein-Uhlenbeck type processes;
Luo and Wang (2018): Levy driven SDE; Li and Wang (2020),
Li, Li, Wang and Zhou (2022) non-linear branching
processes....= exponential ergodicity and ergodicity.

Coupling by change of measure:

Wang (2012): Coupling and Applications; Wang
(2011):Ornstein-Uhlenbeck type processes; Zhang and Zheng
(2018): CB diffusion processes; Huang and Zhao (2019):
nonlinear CB diffusion processes...= ergodicity, Harnack
inequality, gradient estimate for the processes.



Continuous state branching processes (CB)

Let {&,} be positive integer-valued i.i.d. random variables. A
Galton-Watson branching process {Z,} is defined by

Zn-1
Zy = an,h nx1.
i=1
Then (m = E[le])
Zn_1
Zn=Zn1=(m-1)Zs 1+ Z(fn,i_ﬂ) (1)
i=1

The similar structure of a typical continuous state branching
process is given by

dX; = —bX,dt + fo e fo ~ eRi(dt, du, d¢) 2)

where N(dt, du, d¢) = compensated Poisson random measure
on (0,00)3. See Bertoin and Le Gall (2006), Dawson and Li
(2006).



Stochastic equation for CB processes

Suppose that o > 0 and b are constants, and u(d§) is o-finite Levy
measure on (0, 00) satisfying [~ & A 2u(dé) < co.

Theorem (Dawson and Li (2006)) There is a pathwise unique
positive solution to

t t t Xs— oo
Xt=X0—[0 bXsds+[0 a\/Xsst+f0 [0 fo ¢RI(ds, du, d€)

where B; =Brownian motion; N(ds, du, d§) =Poisson random
measure with intensity dsduu(d§)

If we replace X by 1, the above equation becomes the Lévy-It
representation of some Levy process {L;} characterized by

W(z) = bz+ %0222 v [T -1 2e)u(de).

{X:} is called a general CB process with branching mechanism V.



Typical examples of CB processes

Feller (1951)

dX; = —bX,dt + o\/ X, dB;
X¢ is a CB diffusion process with W(z) = bz + %0222.
Lambert (2007); Fu and Li (2010)
dX; = —bX,dt + 0, $/X,_dZ,

where {Z;} is a spectrally positive a-stable Lévy process with
a € (1,2). In this case, X; is a CB pure jump process with
V(z) = bz+0dz"



Transition semigroup

The transition semigroup for CB processes X; with branching
mechanism W(-) given by

By [e] = exp [-xv(t, p)].,
where v : R, x R, — R satisfies

PER) . w(v(tp)), w0.p)=p

and W given by

W(z) = bz+ %0222 v [T -1 26)u(de).



Extinction

The extinction time of CB is defined by
10 =inf{t >0: X, =0}.
Grey (1974): For subcritical (b > 0) or critical (b=0) CB
processes,
P(19 < 00) =1 <= Grey condition holds, i.e.,

there is some constant 6 > 0 such that

/600 W(z) tdz < .



Typical examples when Grey's condition holds

Feller (1951)

dX; = —bX,dt + o\/ X, dB;
X¢ is a CB diffusion process with W(z) = bz + %0222.
Lambert (2007); Fu and Li (2010)
dX; = —bX,dt + 0, $/X,_dZ,

where {Z;} is a spectrally positive a-stable Lévy process with
a € (1,2). In this case, X; is a CB pure jump process with
V(z) = bz+o05z".



CB processes with immigration (CBI)
{Y:} is called a general CBI process with(V¥, ®) given by

t t
Y, - Yo—fo bYSds+/0 o/ Y.dB:

t Ys— oo
N(ds, du,d )
+\/O“/O‘ jo‘f(s,u,f)‘l‘t,
where S; is a subordinator with Lévy exponent
o (z) =az+f0°°(1-e-2“)n(du).

Kawazu and Watanabe (1971): transition semigroup given by

t
Ex [e‘pr] = exp [—xv(t, p) - [) o (v(s, p))ds] ,
where v : R, x R, — R satisfies

WE) - wiv(tp)), v(0.p)=p



Asymptotic behaviors of CBI processes

Theorem (Pinsky (1972), Li (2010), Foucart, M., and Yuan
(2021)). Consider a CBI process (Y:, t > 0).

$(u)
Jo |w(u)|d”< 20 | Jo [t
b Y: —>proper Y, B
b>0 Y: iproper Y, B




Subcritical and critical CBI

Consider a special class of CBI processes given by
t t
Ye = Yo- fo (a—bY,)ds + fo o/ YedB,

+fotfoys‘fo°°§/v(ds,du,d§),

where b > 0,

V(z)=bz+ %0222 + _[Ooo(e_ZE -1+ z&)p(d§).

d(z) = az.
Y} is stationary, i.e.,

Y = Yoo, t— 0.



Synchronous coupling when Grey condition holds

Theorem (Li and M. (2015)). Assume Grey condition holds, i.e.

fem W(z)dz < oo.

the (sub)critical CBI process with the transition semigroup (P¢)ts0
has the strong Feller property. Moreover, for any t > 0 and
x,y € R;, we have

|Pe(x,) = Pe(y, )|, < 2(1—e "),

var

which goes to 0 as t — oo. In this case, the CBI processes have
successful coupling.



Synchronous coupling

Construct the flow {Y;(x):t>0,x >0} by

Yi(x) = x+[0t(a—bY5(x))ds+afOt/0YS(X) W (ds, du)

+/OthYS(X)wa§N(ds,du,d§).

For fixed x, the solution {Y;(x),t >0} is a CBI process
Dawson and Li (2012):

For any x > y > 0 we have P(Y¢(x) > Y:(y) forall t >0) =1
and (Yi(x) = Yi(y))ts0 is a CB process with branching
mechanism V.

The coupling time is the extinction time of the above CB
process.



Exponential ergodicity

Assume Grey condition holds. Then

(i) the subcritical CBI process is exponentially ergodic, i.e.
[Pe(x,) = () |var < 2(x7 + M, )e 72D,
where 1 is the stationary measure, vy =0 A1 and

y { Y] [ (L= L,O)A B dN ify <1,
Tl mb ([ uv(du)) if v = 1.

(ii) the critical CBI process is ergodic.



Grey condition is necessary?

Li, Wang, Li and Zhou (2022): Example of CBI processes,
where

p(d€) =1(,,)(§)dE,  forsome O<u<v<l

and thus

W(z) = (b+ Voo / w(z dz = oo.

The CBI-process is exponentially ergodic relative in total
variation distance (successful refined basic coupling!)

Wang (2011): consider Ornstein-Uhlenbeck type processes.

xt(x):x—fotbxs(x)ds+f0t/R§N1(ds, d¢)

where b >0 and N;(ds, d€) is a Poisson random measure on
(0, 00) x R with intensity dsv(d¢)



Coupling for OU type processes

Theorem (Wang (2011)). Assume that there exists some zp € R
and some ¢ > 0 with B(z,¢) c R\{0} such that the Lévy measure
v(d€) has an absolutely continuous part in B(z,¢), i.e.,

v(d§) 2 p(§)dg

for some non-negative function p and

-1
A oy PO <o

Then for the OU type process

KA +[x-yl)

[Pe(x;-) = Pe(ys)llvar < N

x,yeR,, t>0,

for some constant K > 0.



Coupling by change of measure

Proposition (Mecke's formula). Let M(dx) be a Poisson
random measure on a polish space E with intensity measure
A(dx). Let E, be the space of point measure on E and

G : E x E, > R, be some measurable functional. Then

E[ fE G (x, MYM(dx)] = fEE[G(X, M + 6,)]A(dx)
Fix t > 0. Consider the family of OU type processes by
X (x) =e7btx+ft‘/§e7b(t75)lv1(ds d€)
o JE ’

and
Xe(x) = Xe(y) = e (x-y)

_ bt t —-b(t-s)
Xe(x) = e Pix + fo fB N N (ds, d€)
and
Xe(x) = Xe(y) = e P (x~y)



Coupling by change of measure

Let 7 be a random variable on [0, o) with distribution
%1[0,t](s)ds and U with distribution

1B(20,e/2)(§)p(§)dS
v(B(z0,e/2)

which independent of Nj.

Add a random point as follows:

R A f ~b(t-5)
Xe(x) = e Ptx + +f0 e (Ny + 8¢,y ) (ds, d€)

Xt(_y) = e_bty+...
‘ —-b(t-s)
Ny + 67 yyebr ds, d
+\/O‘ /“;(20,5/2)56 ( 1t (1,U+e™b (x—y)))( S, 5)



Subcritical and critical CBI

Consider a special class of CBI processes given by
t t
Ye = Yo- fo (a—bY,)ds + fo o/ YedB,

+fotfoys‘f0°°§/\7(ds,du,d§),

where b > 0,

V(z)=bz+ %0222 + ’/Ooo(e_ZE -1+ z&)p(dg).

®(z) = az.



Coupling for CBI processes (Grey condition possibly fails)

Assumption A: there exists some zg € R, and some ¢ > 0 with
B(zp,¢) c (0,00) such that the Lévy measure p(d€) has an
absolutely continuous part in B(z,¢), i.e.,

p(d§) > p(€)dé

for some non-negative function p and

-1
fB(m) p(€)7Ld¢ < oo.

Assumption A holds. Then for the subcritical CBI process

KA +Ix-yl)

1P:(x,+) = Pe(y, ) [var < NG )

x,yeR,, t>0,

for some constant K > 0.



|dea of proof
Step 1: construct the flow {Y:(x):t>0,x >0} by

Yi(x) = x+[0t(a—bYs(x))ds+af0t/0Y5(X) W (ds, du)

+/0thYS(X)fO°°§N(ds,du,d5).

and
Yi(x) = Ye(x) = Y:(0) + Y¢(0)

where Y¢(x) - Y;(0) is a (sub)critical CB process independent
of Y;(0).

Step 2: Let
7o =inf{t>0:AY;(0) € B.jp}

where B,/ = B(z0,¢/2).



Remove the CB process starting from AY7,(0) for t € [19, )

2

oy
i

r © Xz (0)
a ::

To

.

The remaining CBI process is given by
N t A t Y (0)
V:(0) = fo (a- bYs(O))ds+a/O [O W (ds, du)

LYo N(ds, dz. d
e[ f%f (ds, dz., d).



The key decomposition for CBI processes

DJ[0, 00): the space of cadlag paths t — w; from [0,00) to R,.
Qx(dw) denote the distribution on D[0, c0) of the CB process
(Xe(x) : t 2 0) with Xp(x) = x.

Qu(dw) on D[0, ) by

Qulaw) = [, () Qel).

M(ds, du, dw) be a Poisson random measure on
(0,00)? x D[0, 00) with intensity measure dsdu@Q,,(dw).

We define the process Y;(x) by

A t Y (0)
Ye(x) = Ye(x) = Ye(0) + V4 (0) + fo fo fD[O L, WeesM (35, du,dw)

Note that {Y:(x) - Y:(0)}, {Y:(0)} and M(ds, du, dw) are
independent of each other



Coupling by change of conditional measure

Let P(-) = P(-|Vs(0),0 < s < t)
Under P, let 7 be a random variable on [0, co) with distribution
ml[oﬂ(s) Ys(0)ds and w on D[0, c0) with distribution
1g,,, (wo)Qu(dw)
#(85/2) ’

which independent of M.

Add a random point which induces a independent CB path as
follows:

t Y. (0)
Yt(x):..-+[0 [0 [D[Om)wt5(M+5(T,w))(ds,du,dw),

t Ve (0)
Yt(y)=--'+fo /0 fD[Om) We—s(M + 0(7 i vr s ()= Yo (x) ) (5.



Thanks for your attention |
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